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Abstract

We use ab initio potential energy surfaces, including new parametrizations of
the bending potentials for the two lowest electronic states, to calculate the rate
constants for the reaction 0(3P)+H2. The dynamics calculations are based on
variational transition state theory with multidimensional semiclassical tunneling
corrections. We present results for the temperature range 250-2400K. In general
the calculated rate constants for the thermal reaction are in excellent agreement
with available experiments. We also calculate the enhancement effect for exciting
H2 to the first excited vibrational state. For the reaction of vibrationally
excited H2 the rate constant is based on a dynamical bottleneck of 7.2 kcal/mol,
as compared to a saddle point value of 12.6 kcal/mol, and it is in good agreement
with experiment. The good agreement of theory and experiment for the excited
state rate provides a dramatic demonstration of the reality of dynamical bottle-
necks at locations far from the saddle point.

1. Introduction

Theoretical advances in chemical kinetics often require integration of several
kinds of information. The combination of electronic structure and chemical dyna-
mics calculations provides one particularly fruitful way to gain a detailed under-
standing of the forces responsible for observed kinetic phenomena. In our own
work we have made several calculations of chemical reaction rates based on
potential energy surfaces derived in whole or in part on ab initio electronic
structure theory. Systems studied have included the reactions H+H2, OH+H2, 0+0H,
F+H2, and 0+H2.

The 0+Hp reaction, unlike all the others on the above list, has more than one
Tow-1ying potential energy surface. In addition to the 1A' water surface, that
does not correlate adiabatically to the 3P state of 0, there are two 3A' surfaces
and a 3A" one that do. One 3A' surface and the 3A" surface form a degenerate I
state for all collinear goemetries but have different bend potentials: The 3" state
has a significantly broader bending valley, and hence it dominates the thermal rate
at most temperatures of interest, although the 3A' state may make a non-negligible
contribution at high temperature (1,2). The second 3A' state is unimportant for the
thermal reaction rate. In our previous calculations (3,4) we included only the
contributions from reaction on the lowest-energy 3A" surface. The collinear part
of this surface was treated by the modified rotated Morse oscillator spline fit of
Lee et al. (5) to the ab initio calculations of Walch et al. (1,2,6) and the bend
potential was treated Dy an anti-Morse bend model (7-9) with one parameter adjusted
to reproduce the harmonic bend potential at the saddle point for the same ab initio
calculations. In the present paper we include both electronic states, and the
potential energy surfaces are treated by an improved parametrization. The improved
parametrization consists, for each of the two surfaces, of a three-parameter fit to
the bend potential so that it agrees with the newest ab initio calculations (10)
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for large-amplitude (45°) bends at three points along the reaction path, including
both the saddle point and a point close to the vibrationally adiabatic ground-
state barrier maximum. We use the PolCI calculations of Walch et al. (1,6,10)
because (i) they are available at enough geometries to determine both potential
energy surfaces in the regions important for the reaction rate and (ii) they appear
reasonably accurate. We note that in our previous study (4) of the 0+H2 reaction,
we calculated rate constants for five potential energy surfaces. Two of these,
called surfaces P and M, were based on the Pol1CI calculations, and the results
appeared to show that these were the most accurate of the five.

The procedure used to fit the bend potential in the present study is a
specific example of a strategy that may be very useful in many cases (11), namely
the fitting of a globally defined potential in the wide vicinity of a reaction path
with speciai emphasis on dynamical bottleneck locations (12) as determined by
Yar;ationa1 transition state theory (13,14) or the adiabatic theory of reactions

15).

Having obtained a representation of the potential energy surface, we calcula-
ted both thermal rate constants and state-selected rate constants for vibrationally
excited H2 by variational transition state theory with semiclassical ground-state
transmission coefficients (3,16-18). These methods have been shown to provide
reasonably accurate estimates of the quantum mechanical local-equilibrium and state-
selected reaction rates for most chemical reactions (3,13,14,19,20). In general we
believe we can use these methods to calculate rate constants that are reliable for
a given potential energy surface to within a factor of two or better at room tem-
perature and above. This is sufficient to compare computed rate constants to
experiment, to test ab initio potential energy surfaces, and to draw useful conclu-
sions about which features of the potential energy surface are significant for
determining the magnitudes of observed rate constants and kinetic isotope effects.

2. Potential Energy Surfaces

The 3 potential energy surface is represented by the rotated Morse oscillator
spline function of Lee et al. (5) for collinear geometries augmented by an anti-
Morse bend (AB) potential (7-9). The parameters of the bend potential are adjusted
to ab initio calculations (1,6,10) in the region near the saddle point and the
vibrationally adiabatic ground-state barrier maximum {the maximum of Vg(s) in the
notation used previously (12,17)}. Further details are given elsewhere (21).

3. Dynamical Calculations

We calculated a separate rate constant for each potential energy surface.
Denoting these results by kas and ka' respectively, the thermal (i.e., canonical
ensemble) rate constant is

k = kA' + kA" 1)

Each of the single-surface rate constants includes a multiple-surface coefficient
(22) equal to 3/Q§ where 3 is the electronic degeneracy of the generalized transition
state and 081 is the electronic partition function of atomic 0.

The single-surface rate constants were calculated by improved canonical varia-
tional transition-state-theory (ICVT) with semiclassical ground-state transmission
coefficients. The methods are described in detail elsewhere (3,16-18). First we
calculate the minimum energy path (MEP) by following the negative gradient of the
potential in mass-scaled coordinates. Then for each distance s along the MEP we
calculate the improved generalized standard-state free energy of activation
AGIGT,0(T,s) for a generalized transition state at this s, where T is the tempera-
ture. The hybrid ICVT rate constant for temperature T is then given by
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1) = min &0 ¢ Oerp-a6"8T:0(7,5)/k7] 2)
S

kICVT(

where k is Boltzmann's constant, h is Planck's constant, and K0 is the reciprocal

of the standard-state concentration. This rate constant is a hybrid because the
reaction coordinate is treated classically but other degrees of freedom are all
treated quantally. In the final step we add quantal effects on the reaction coordin-
ate by a ground-state (G) transmission coefficient «G(T):

kICVT/G(T) - KG(T)kICVT(T) 3)

We consider two methods to approximate «G(T): the minimum-energy-path semiclassical
adiabatic method (MEPSAG) (17) and the least-action method (LAG)(18). The latter
accounts for the shortening of the tunneling path due to the system "cutting the
corner” of the curved MEP through mass-scaled coordinates by finding the dynamically
optimal tunneling path by evaluating an imaginary-action functional along a one-
parameter sequence of trial paths. These vary linearly between the MEP at one
extreme and a straight line through mass-scaled coordinates from the translational
turning point on the MEP in the entrance channel to the translational turning point
on the MEP in the exit channel at the other extreme.

Anharmonicity is included as discussed elsewhere (3,17).

The evaluation of state-selected rate constants for H2 in the n=1 excited
vibrational state requires further assumptions. Figure 1 shows the vibrationally

adiabatic potential curves for n=0 and 1 for the 3A” surface. The potential curves
in Fig. 1 are defined by

VI(n,s) = Vyep(s) + ey (ns) + 268 () 4)

where VMep(s) is the Born-Oppenheimer potential on the MEP, egtp(n,s) is the local
vibrational energy of the stretching mode orthogonal to the MEP and in quantum state
n, and Zegend(s) is the local zero point energy of the twofold-degenerate bending
mode. Figure 2 shows the same quantities for the 3A' state. In both cases we
also show the curvature x(s) of the MEP through mass-scaled coordinates (17). We
will consider two limits for the excited-state rate constants. The first is the
adiabatic limit (4,16,18,23), in which case we perform calculations identical to
those for the thermal reaction rate except that in both AGIGT,0(T,s) and the
tunneling calculation we neglect all stretching vibrational states except the n=1
stage. The second treatment is a sudden nonadiabatic model explained elsewhere
(21).

We will consider three reactions:

0+ H2 +0H + H R1)
0+ D2 +0D+D R2)
0+HD+OH+Dand OD+H R3)

4. Results

Table I shows results for two methods of calculating transmission coefficients.
The MEPSAG results are based on a semiclassical adiabatic treatment of tunneling
along the minimum energy path (17). As compared to the LAG method this underesti-
mates the rate constrant by a factor of 24 at 200K and a factor of 3.3 at 300K. This
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confirms, as first discovered for the H+H2 reaction (24) and then found in many

cases (4,13,16-19,25-31), that multidimensional effects on the tunneling probabilities
are very important and reduction to a one-dimensional problem by simply straightening
out the minimum-energy reaction path seriously underestimates the extent of tunneling.

Table I also compares the final thermal rate constants of this study for reac-
tion R1) to a selection of experimental (32-34) results. For 297-472K, the table
shows only the most recent experimental data (32). The ICVT/LAG rate constants are
usually larger than these results but agree within 25%. Rate constants in this tempera-
ture range are very sensitive to the barrier height, and the uncertainty in the ab
initio potential energy surface is certainly great enough to yield larger errors.
Thus the agreement of the present calculations with experiment is better than could
have been expected. Furtherimore the other recent experimental measurements in this
range do not all agree with those of Presser and Gordon within a factor of two. The
most recent evaluation (33) of experimental data for the 0+H2 reaction concludes
that for T>400K the expression of Baulch et al. (34) fits most of the data within
experimental error. We use this expression for the experimental values at 600-1500K.
In this temperature range the present calculated rate constants are all larger than
these experimental results, but the ICVT/LAG results are high only by factors of 1.2-
1.5. At 2400K the agreement with experiment (35) is excellent.

We also calculated thermal rate coefficients for the isotopic analog reactions
and the kinetic isotope effects and compared them to experimental (32,34-37) results.
Because of space limitations we simply point out here that the calculated results
agree with the experimental ones within the reliability of the latter. We also cal-
culated kinetic isotope effects by conventional transition state theory (TST)}. These
are qualitatively similar to the ICVT/LAG results, and hence also to the experimental
results, but that is at least partly fortuitous since TST greatly underestimates the
individual isotopic rate constants. For example for reaction R1) the TST rate con-
stant is a factor of 9.3 lower than the ICVT/LAG one at 300K and a factor of 2.5
smaller at 400K. The LAG transmission coefficients are even larger, 12.6 at 300K and
3.1 at 400K, but the lack of quantal effects on reaction-coordinate motion in con-
ventional TST is partly compensated by the lack of variational minimization of the
hybrid rate constant with respect to the location of the generalized transition state.
Then a further cancellation of errors occurs in the kinetic isotope effect ratio.

The adiabatic and sudden nonadiabatic rate constants for reaction R1) with
vibrationally excited Hy are very similar for the present potential energy surface;
thus we tabulate only the adiabatic values. The rate constants calculated by the
adiabatic theory for reaction R1) when H2 is excited to the n=1 vibrational state
are given in Table 1I. We see that the transmission coefficients (ratios of ICVT/LAG
tunneling-corrected rate constants to ICVT hybrid ones) are 2.6-2.7 at 302K, which
are very significant factors but are smaller than for the thermal reaction rate.

At 302K the calculated vibrational enhancement factor in the ICVT/LAG approximation
is 1.4x103 by Light (38), but it is only 8.2x 102 times larger than the interpolated
¥au1e of Presser and Gordon (32). The agreement of theory with experiment is satis-
actory.

Table IIT shows some of the properties of the dynamical bottlenecks for the
vibrationally excited reaction. The variational. transition states are farther from
the saddle point (s=0Q) for the vibrationally excited reaction than for the thermal
reaction. Similar results have been found previously for H+H2 (23) and OH+H2 (39)
for vibrationally excited reactants. This means that the improved parametrization
of the bend potential for geometries far from the saddle point becomes more important
for n=1. It also means that conventional TST becomes worse. Conventional TST pre-
dicts a vibrational enhancement factor of 2.5x105 at 302K, which is two orders larger
than the accurate values. The good agreement of the ICVT/LAG values with experiment
provides a dramatic demonstration of the reality of dynamical bottlenecks at locations
far from the saddle point.
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TABLE 1. Thermal rate constants (cmomolecule™'s™) for 0+Hp » OH+H.

T(K) ICVT ICVT/MEPSAG ICVT/LAG Exp.

250 2.94(-20) 2. 1.77(-18 T a
297 8.45(-19) 3. 1.15(-17 1.0(-17)
318 2.76(-18) 8. 2.38(-17 1.9(-17)a
370 2.93(-17) 6. 1.20(-1 1.1(-16)a
422 1.75(-16) 3. 4.70(-1 3.8(-16)a
472 6.84(-16) 1. 1.83(-1 1.2(-15)a
600 8.21(-15) 1. 1.24(-1 1.0(-14)b
1000 3.89(-13) 4. 4.45(-1 3.4(-13)b
1500 3.31(-12) 3. 3.52(-1 2.3(-12)b
2400 2.10(-11) 2. 2.15(-1 2.1(-11)¢

3 presser and Gordon (32).
® Baulch et al. (34).
 pamidimukkala and Skinner (35).

TABLE II. Rate constants (cm3molecu1e']s_]) for the state-selected reaction
0+H2(n=1) -~ OH+H.

T(K)

ICVT/LAG

250
302
400
1000
2400

1.0(-14)

3 from Light (38).



TABLE III. Bottleneck properties at conventional and canonical variational
transition states for O+Hp(n=1) » OH+H.2

S n= - 9
Surface F S Mz a3 Viep Valn=1) gy (nel) Zhend
(ao) (ao) (ao) (kcal/mo1)  (kcal/mol)  (kcal/mol)  (kcal/mol)

3pn .. 0.00 2.29 1.74 12.58 19.07 4.89 1.61
300 -0.55 2.95 1.45 7.22 23.02 14.74 1.07

1000 -0.51 2.91 1.45 7.64 22.96 14.22 1.10

3a s 0.00 2.2%9 1.74 12.58 20.00 4.89 2.53
300 -0.54 2.93 1.45 7.36 23.92 14.57 1.98

1000 -0.51 2.90 1.45 7.69 23.87 14.14 2.04

a ri2 and r23 are the nearest-neighbor OH and HH distances at the saddle point
(s=0) or the variational transition state for the temperature indicated.
1 ag=1 bohr=0.5292 &.

(M
(2)
(3)
(4)
(5)
(6)

(7)
(8)
(9)

(10)

(1)

(12)
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Fig. 1. Vibrationally adiabatic potential curves (solid curves with scale at left)
defined by eq. 4) for n=0 and 1 and curvature of the reaction path
(dashed curve with scale at right) as functions of the distance s along
the minimum energy path through mass-scaled coordinates for the
potential energy surface. The saddle point is at s=0.
marks on the ordinate scales denote the energies of 0+Hz(n=1), left
side, and OH{n=1) +H, right side.
Fig. 2. Same as Fig. 1 except for 3A' surface.
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